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The Hydrosynclastic Infundibulum* |

David L. Book

Laboratory for Computational Physics

Naval Research Laboratory

Washington, DC 20375

In connection with design studies of a high-density-gas-enclosed Z-

pinch fusion experiment, Robson (personal communication, 1984) has noted the

advantages of surrounding the discharge volume with a water vortex. The

latter serves as a first wall, radiation barrier, and heat exhange medium,

and scavenges reaction products and unburned fuel. The present note is

written in order to show how such a vortex can be set up inside an
p

appropriately shaped convergent axisym-etric duct, or infundibulum.

We consider steady incompressible flows in a geometry indicated

schematically in Fig. 1. A jet of water is directed tangentially and

slightly downward against the surface of the duct at the input point, where

the radius is Ro. The duct axis is assumed to be in the vertical

direction. If the inlet flow speed is v0 and the volume flow rate is V,

then the initial thickness A of the layer of water flowing around the duct

is given by

V 27r RoVoA sin80 , (1)

where 80 is the angle between the direction of the input flow and the

tangent to the circle of radius R0 in the horizontal plane. If A << Ro,

then all the water has the same values of all three components of the

velocity vector at the input point. For the time being we assume that the

flow is laminar.

Manuscript approved February 21, 1985.

* With apologies to Kurt Vonnegut, Jr.
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We can treat steady flows in this configuration using either an

Eulerian or Lagrangian representation. Since the flow progresses

monotonically downward, either distance traveled along a streamline, its

projection on the r - z plane, or the projection of the latter onto the

negative z axis (i.e., downward displacement) can serve as a timelike

variable parametrizing the motion of a fluid element. Neighboring elements,

however, although they remain contiguous, do not travel at the same speed.

As a result, any small volume of fluid undergoes shear in the course of its

descent through the duct, so that a Lagrangian description based on the use

of displacment instead of time is not very convenient. We therefore elect

to work in Eulerian coordinates.

The Eulerian equations of steady incompressible axisymmetric laminar

flow in cylindrical coordinates are

13 3w 0
T r (ru) + 0; (2)or 2--0 2)I .

au 3u v2  1 a -"
U IF + w -- -+ ifr - 0; (). ..

u ru + w 7- + 0- -0; (4)

3w 3w 1 3n
uI-+w + g +. o, (5)

where we have included the acceleration due to gravity in Eq. (5).

To solve Eqs. (2)-(5), it is useful to introduce curvilinear S

coordinates. A streamline coordinate a is defined by

. .°.. . .
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m-~o I, oZ- -.

da2 
-dr

2 + dz2 , (6)

where

dr - -(7)

The unit vector in the direction of increasing a is thus

e U-1 r(eu + e w), (8)

where

p

U - (u2 + W 2 )1 /2 . (9)

The coordinate transverse to a is T; it increases in the direction of the

unit vector

e u- 1 (e.w - u). (10)

If a = 0 at the inlet position, then for fixed T, a is the length of a

streamline projected on the r-z plane. Likewise, we define T = 0 at the

duct wall, so that for fixed a, T measures the distance by which a

streamline was separated from the wall at the duct inlet, 0 .T ' A.

In terms of a and T we can express the radial coordinate of a point on i

streamline T by

Availtility Codes
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r~a~) -f~da' U(O',T)/uJ(O',T). (1

Substituting

and

UI (W u .~)(13)

* in Eq. (2) w find

D-+ (sn 3) -0, (14)

where *-tan&1 (ufw) is the angle a streamline makes with the vertical

K direction, while Eqs. (3)-(5) become

au v +1 (5

av uv (6

aw -W (16)

For general inlet conditions and duct geometry, Eqs. (14)-(07) can only be

integrated numerically. We can however, learn something about the behavior

to be expected in the general case by considering a class of flow fields

obtained by making some simple ansatzes regarding the properties of the flow

and then choosing a duct shape which conforms with the solutions. To do

* this we return to the cylindrical form of the system, Eqs. (2)-(5), and

write

4



u~ ~ z rm~ a +~;(8

v C/r; (19)

w -W(Z); (20)

p -p [A(r) + B(z)I, (21)

p. D

d C and D constant, then Eqs. (2) and (4) are satisfied identically, and we

are left with

p __ .(C
2

- .

r ( )2 1 d2w ( + D2) d!A 0 (22)
4 dz W 2d.-. dr

and

dw dB~ 20 '';

w - + g + . (23)

For Eq. (22) to have a solution it must separate into two equations, one in

r and one in z. Thus

D ±w 2d I d2w
) d 2 w dz - cont (24) -'-

and

1 C2 +D 2 1 os,(5

r dr i

The solution of (24) Is

W(Z)- w 0 cz (h-z) (26)

0

rl [. dA C~r + D2 - cnst (25 | "" ]
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v0 , a, and h constant, whence

1dw2  1 d2W
4(s) w =dz' (1 aw (27)

and

A(r) - K ((z wa vr + c 2 + (28)

K constant. Finally, Eq. (23) yields

B(z) -- gz - W2 gz [w~ a (h -Z)
2 12 . (29)

Equation (7), defining the projected streamlines, yields0

dr -ot r (h-z) + D/r
U w V -et(h-) W (30)

whose solution is

r2 (w -a h2) + 2Dz
2 0 0 (1
r1 - CL (h-z)' (1

rconstant. Since the duct surface must be a streamline, which we can

specify by means of Rtj, its maximum radius at z -0, its radius as a

function of vertical position for z < 0 is given by

R2 (w -ah 2 ) +2Dz 1/2
R(z)[ 0 0 (32) : -11 act(h-z)'

00
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Some remarks are in order here regarding the limitations of this

solution. From Eq. (26) we see that w(0) < 0 implies w0 < cA h
2 , while

w(z) < 0 as z + - implies a > 0. To ensure that R(z) > 0 for all z, we

infer from Eq. (32) that D > 0 must hold. In order that the streamlines

have positive slope at z = 0, Eq. (30) implies that D < a R2h, so that
0

h > 0. Hence the streamlines have positive slope for all z. From Eqs. -.

(21) and (29) it is clear that when -z is sufficiently large the pressure

becomes negative, which imposes a constraint on the length of the system.

And fina-y, we have no way to ensure that the pressure on the inner surface p
of the vortex matches that of the gas inside. Generally in experiments this

pressure will be roughly independent of z, which cannot be said of the

present solution.

p

To make this solution more meaningful, we assign some more-or-less

arbitrary values to the constants appearing in Eqs. (18-(32) and examine the

consequences:

Table 1.

Parameter Value Units

C 104 cm2 s- 1
2 -1

D 10 cm2  -i

A I cm

h 102 cm

K 107  dyne cm-2

R0  10 cm

We give a and w0 two different sets of values: (1) a - 102 cm- s- , w0  .

-I02 cm s- , and (2) a = 5 10-2 cm-1 s-1, w0  1 02 cm s"-1 In Table 2 we

show the resulting values of the three velocity components at z = 0; the

inlet flow speed v0 ; the pitch angle 00 , given by

7
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V|
sin - [u(0)2 + w(0)2J]/2 v0 ; (33)

the duct angle %,0 obtained from (30) using

tan dR/dz ; (34)

the flow rate V given by Eq. (1); the corresponding power W - .
2 0

where we set - 1.0 g cm73 ; the inner and outer radii R and of the flow

(see Fig. 1) at z - - 100 cm and z - 200 cm; and the pressure p2 (z) on the

duct surface at z - 0, z1 - -100 cm, and z2  -200 cm.

S

S"2
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It is evident that f or these choices the dependence on gravity and the

radial dependence are both weak; moreover, the layer of water becomes

thinner, not thicker, as -z increases, owing to the increase in the vertical

velocity component.

Table 2.

Case (1) Case (2)

u(0) -9.0 cm S1-24 cms-

()103 cm s-1 103 cm -

W(O) -200 cm s-1 -400 cm s-1

v0  1.02x,0 3 cm -11.08x10 3 cms-

6011.3 deg 21.8 deg

2.6 deg 7.1 deg0

V12.6x10 3cm3 S-1 25.2x103cm3s-1

W 655 W 1.46 kW _

R1Cz1 ) 6.0 cm 4.2 cm

RZ2(z ) 6.6 cm 4.7 cm

Rl(z 2) 4.5 cm 2.9 cm

R, (z.) 4.9 cm 3.1 cm

P2(0) 9.5x106" dyne cm 2  9.5xl0r' dyne cm2

p2 (Zl) 8.9x10 6 dyne cm--2  7.7x106 dyne cm-2

P2(z2) 7.4x,06 dyne cm-2  5.0x106l dyne cm-2

7.



Now let us consider the effect of restoring the viscous damping terms 9

omitted from Eqs. (3)-(5). We assume that viscous processes are important

only in a thin boundary layer next to the surface of the duct, and initially

we assume that the flow in the boundary layer is laminar, so that the

kinematic or molecular viscosity V can be used. For flow in pipes this is a

good assumption provided that perturbations in the flow at the entrance to

the pipe are kept as small as possible (see, e.g., L.D. Landau and E.M.

Lifshitz, Fluid Mechanics, Pergamon, London, 1959, §29).

The thickness of a laminar boundary layer is given (Landau and

Lifshitz, op. cit., §39) by

6 - GI(v Sly) 1 /2 , (35)

where G1 is a geometrical constant of order unity and S w -z is the distance

traveled along the boundary. (There is some question in my mind whether S

should not be the total length of a (helical) streamline.] Taking GI 0 1,

S _ 100 cm, v = 103 cm s- , and v = 10-2 poise, we find that 6 a 3 10-2 cm.

The frictional force per unit area of the surface of the duct is given by

a G2 P(v v3/S)1/2 . (36)

The power needed to overcome frictional losses in the boundary layer is

Wf - 2irRa vdz

- 2n (37)
2w vRa S,

where the bar represents an average. Taking the geometrical factor G. 0I

and setting R = 5 cm, we find 100 watts.

The boundary layer may, however, become turbulent as a result of the

introduction of disturbances at the inlet, through the action of duct

surface irregularities, or because a critical Reynolds number is exceeded

10



(Landau and Lifshitz, op. cit., §42-44). If that happens, the boundary

layer thickness is given by

V ~ S/v, (38)

where

v = G3v~log(v*S/v), (39)

Since v, varies slowly as a function of S, S now increases almost linearly 0

with S, in contrast with (35). The frictional force per unit area in the

boundary layer is given by

a a v2 (40)

Evidently 6 grows rapidly, approaching the thickness of the whole vortex in

a few centimeters or less. When this happens, the entire flow goes S
turbulent and boundary layer theory becomes inapplicable. It is obvious in

any event that viscous losses must be much larger in the turbulent case than

for laminar flow.

I
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